

Enzymatic Depolymerization Against Polymers Structure and Properties in the Perspective of Biochemical Recycling

<u>C. Gkountela¹, E. Nikolaivits², G. Taxeidis², J. Nikodinovic-Runic³, E. Topakas², S. Vouyiouka^{1,*}</u>

¹Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece, <u>*mvuyiuka@central.ntua.gr</u>

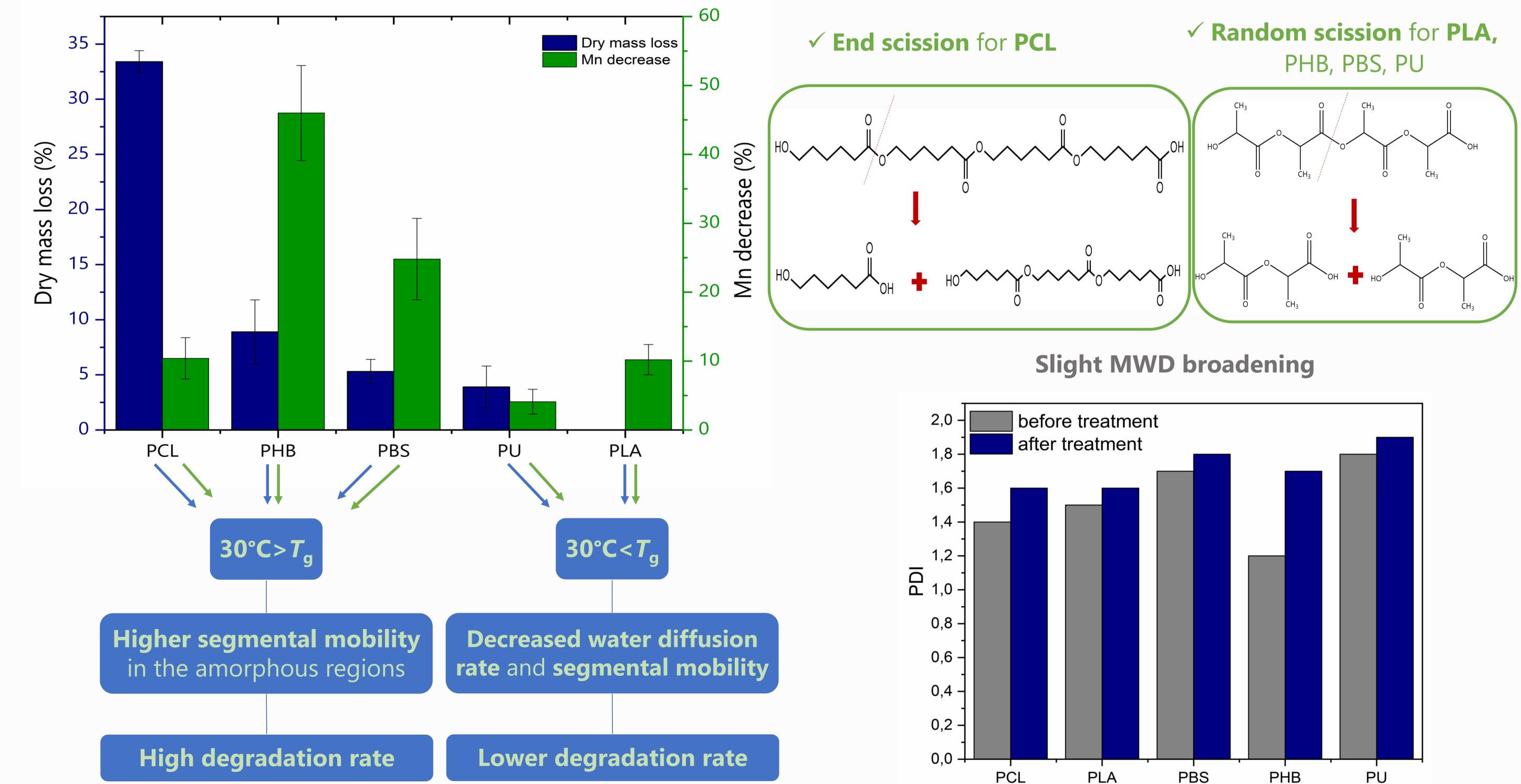
²Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, **Athens, Greece**

³Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia

Introduction

Biochemical recycling via enzymatic depolymerization is an alternative, sustainable approach to produce oligomers or monomers for new polymers or other value-added products [1], [2]. Even for biodegradable polymers, enzymatic depolymerization becomes promising since their degradation kinetics in real environmental conditions is found slow [3] – [5]. In this context, a psychrophilic esterase (MoPE) from the Antarctic bacterium Moraxella sp. was tested based on its ability to degrade via hydrolysis reactions a variety of biodegradable and nonbiodegradable, semi-crystalline polymers [1].

Experimental Part


Results and Discussion

Characterization of the target polymers and **ranking** based the most important on properties ($T_{q_i} x_{c'} \overline{M_n}$) affecting enzymatic degradation.

Polymer	Τ _g (°C)	х _с (%)	M _n (g/mol)
PLA	59	11	100600 ± 300
PHB	-4	49	177400 ± 8100
PCL	-64	45	73700± 600
PBS	-32	64	16100± 900
PU	150	_	66500 ± 500

Property	Polymers Ranking								
T g	PCL	<	PBS	<	PHB	<	PLA	<	PU
X _c	PBS	>	PHB	>	PCL	>	PLA	>	PU
Mn	PHB	>	PLA	>	PCL	>	PU	>	PBS

The enzymatic degradation efficiency was evaluated based on the determined dry mass loss, the M_n and the PDI decrease.

PLA PBS PCL PHB

Conclusions

MoPE was found efficient to hydrolyze biodegradable and non-biodegradable polymers with a broad range of x_c from 11 up to 64%, indicating the ability of the enzyme to degrade highly crystalline polymers. The polymers' glass transition temperature was found the most crucial factor for the hydrolysis rate.

References	Acknowledgment				
[1] E. Nikolaivits, G. Taxeidis, C. Gkountela, S. Vouyiouka, V. Maslak, J. Nikodinovic-Runic, E. Topakas. J. Hazard. Mater. 2022; 434: 128900	This research was funded by European Union's Horizon 2020				
[2] E. Nikolaivits, B. Pantelic, M. Azeem, G. Taxeidis, R. Babu, E. Topakas, M. Brennan Fournet, J. Nikodinovic- Runic. Front. Bioeng. Biotechnol. 2021; 9: 535.	research and innovation program under grant agreement No 870292 (BioICEP Project) and by National Natural Science Foundation of China (Nos. 31961133016, 31961133015, and				
[3] C. Gkountela, S. Vouyiouka. Macromol. 2022; 2: 30-57. [4] E. Rudnik, D. Briassoulis. J. Polym. Environ. 2011; 19(1): 18-39.					
[5] G. Gallet, R. Lempiainen, R. Karlsson. Polym. Degrad. Stab. 2001; 71(1):147–151.	31961133014).				
Polymers 2022New Trends in Polymer Science: Health of the Planet, Health of the People 25–27 May 2022, Turin, Italy	UNIVERSITÀ DEGLI STUDI DI TORINO				