
Evaluation of the parameters of poly(butylene succinate) enzymatic polymerization

C. I. Gkountela, D. N. Markoulakis, D. M. Korres, S. N. Vouyiouka*

Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Greece, (*mvuyiuka@central.ntua.gr)

Introduction

Poly(butylene succinate) (PBS) is a **bio-based** and **biodegradable** polyester, that can be used in numerous applications, especially in the biomedical sector [1,2]. Even though green polymerization routes such as **biocatalysis** are being developed [3,4], there is a very limited literature on the enzymatic synthesis of PBS and in most of the works where high-molecular-weight PBS is produced, several drawbacks may impede the process scaling up. On that basis, an eco-friendly, solvent-free, enzyme-based process for the production of PBS was applied and the most important process parameters were evaluated.

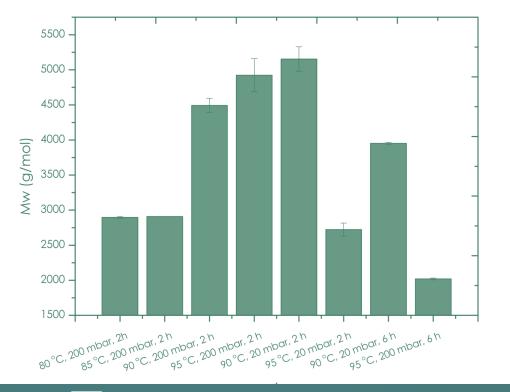


Figure 3. $\overline{M_w}$ of the enzymatically synthesized oligomers

scaled up (ca. 10 g of product).

The synthesized at 90 °C, 20 mbar, 2h product was successfully

Figure 4. $\overline{M_w}$ and T_m of the enzymatically synthesized oligomers

Table 1. Scaled-up PBS oligomer's properties

$\overline{M_n}$ (g/mol)	<u>M</u> _w	7 _{m1}	Τ _c	7 _{m2}	Τ _{d,5%}	τ _d	Residue
	(g∕mol)	(°C)	(°C)	(°C)	(°C)	(°C)	(%)
1000	4700	104	57	103	258	387	1,44

Conclusions

The bulk enzymatic polymerization route resulted in a PBS grade of $\overline{M_w}$ 4700 g/mol, crystallinity ca. 61% and melting points at ca. 104°C. This free of thermal degradation and metal catalyst residues grade is appropriate to be used in biomedicine applications where low controlled molecular weight is usually needed.

References

[1] Xu J, Guo B.H, Biotechnology Journal. 2010; 1149–1163. [2] Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A. European Polymer Journal. 2016; 75: 431–460. [3] Douka A, Vouyiouka S, Papaspyridi L.M, Papaspyrides C.D. Progress in Polymer Science. 2018; 79: 1–25. [4] Gkountela C, Rigopoulou M, Barampouti E.M, Vouyiouka S. European Polymer Journal. 2021; 143: 110197